Histone Modifications in Senescence-Associated Resistance to Apoptosis by Oxidative Stress☆☆☆

نویسندگان

  • Yan Y. Sanders
  • Hui Liu
  • Xiangyu Zhang
  • Louise Hecker
  • Karen Bernard
  • Leena Desai
  • Gang Liu
  • Victor J. Thannickal
چکیده

Aging and age-related diseases are associated with cellular senescence that results in variable apoptosis susceptibility to oxidative stress. Although fibroblast senescence has been associated with apoptosis resistance, mechanisms for this have not been well defined. In this report, we studied epigenetic mechanisms involving histone modifications that confer apoptosis resistance to senescent human diploid fibroblasts (HDFs). HDFs that undergo replicative senescence display typical morphological features, express senescence-associated β-galactosidase, and increased levels of the tumor suppressor genes, p16, p21, and caveolin-1. Senescent HDFs are more resistant to oxidative stress (exogenous H2O2)-induced apoptosis in comparison to non-senescent (control) HDFs; this is associated with constitutively high levels of the anti-apoptotic gene, Bcl-2, and low expression of the pro-apoptotic gene, Bax. Cellular senescence is characterized by global increases in H4K20 trimethylation and decreases in H4K16 acetylation in association with increased activity of Suv420h2 histone methyltransferase (which targets H4K20), decreased activity of the histone acetyltransferase, Mof (which targets H4K16), as well as decreased total histone acetyltransferase activity. In contrast to Bax gene, chromatin immunoprecipitation studies demonstrate marked enrichment of the Bcl-2 gene with H4K16Ac, and depletion with H4K20Me3, predicting active transcription of this gene in senescent HDFs. These data indicate that both global and locus-specific histone modifications of chromatin regulate altered Bcl-2:Bax gene expression in senescent fibroblasts, contributing to its apoptosis-resistant phenotype.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Role of histone deacetylase 2 in epigenetics and cellular senescence: implications in lung inflammaging and COPD.

Histone deacetylase 2 (HDAC2) is a class I histone deacetylase that regulates various cellular processes, such as cell cycle, senescence, proliferation, differentiation, development, apoptosis, and glucocorticoid function in inhibiting inflammatory response. HDAC2 has been shown to protect against DNA damage response and cellular senescence/premature aging via an epigenetic mechanism in respons...

متن کامل

Sirt1 regulates aging and resistance to oxidative stress in the heart.

Silent information regulator (Sir)2, a class III histone deacetylase, mediates lifespan extension in model organisms and prevents apoptosis in mammalian cells. However, beneficial functions of Sir2 remain to be shown in mammals in vivo at the organ level, such as in the heart. We addressed this issue by using transgenic mice with heart-specific overexpression of Sirt1, a mammalian homolog of Si...

متن کامل

The Lcn2-engineered HEK-293 cells show senescence under stressful condition

Objective(s): Lipocalin2 (Lcn2) gene is highly expressed in response to various types of cellular stresses. The precise role of Lcn2 has not been fully understood yet. However, it plays a key role in controlling vital cellular processes such as proliferation, apoptosis and metabolism. Recently it was shown that Lcn2 decreases senescence and increases proliferation of mesenchymal stem cells (MSC...

متن کامل

Idebenone prevents human optic nerve head astrocytes from oxidative stress, apoptosis, and senescence by stabilizing BAX/Bcl-2 ratio.

PURPOSE Oxidative stress plays an important role in the pathogenesis of several neurodegenerative diseases including glaucoma. Astrocytes are supposed to play a role in glaucoma pathogenesis. This study investigates the antiapoptotic and cytoprotective effects of idebenone on optic nerve head astrocytes (ONHA) under oxidative stress. METHODS ONHA were treated with 1 to 150 µM idebenone. Cell ...

متن کامل

Sodium valproate ameliorates aluminum-induced oxidative stress and apoptosis of PC12 cells

Objective(s): According to recent studies, valproate shows some protection against oxidative stress (OS) induced by neurotoxins. Current investigation tried to determine the possible ameliorating effects of sodium valproate (SV) against aluminum (Al)-induced cell death, apoptosis, mitochondrial membrane potential (MMP), and OS in PC12 cells.Materials ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 1  شماره 

صفحات  -

تاریخ انتشار 2013